ON STRONG M_{α} -INTEGRAL OF BANACH-VALUED FUNCTIONS

XUEXIAO YOU*, JIAN CHENG**, AND DAFANG ZHAO***

ABSTRACT. In this paper, we define the Banach-valued strong M_{α} -integral and study the primitive of the strong M_{α} -integral in terms of the M_{α} -variational measures. We also prove that every function of bounded variation is a multiplier for the strong M_{α} -integral.

1. Introduction

In [1], Jae Myung Park, Hyung Won Ryu and Hoe Kyoung Lee introduced a Riemann type integration process, called M_{α} -integral, which falls in between the Lebesgue Integral and the Henstock Integral. Some properties of the M_{α} -integral were studied in [1, 2, 3].

In this paper, we define and study the strong M_{α} -integral of functions mapping an interval [a,b] into a Banach space X. We prove that the M_{α} -integral and the strong M_{α} -integral are equivalent if and only if the Banach space is finite dimensional. If the function $F: \mathcal{I} \to X$ is differentiable almost everywhere on [a,b], then it is the indefinite strong M_{α} -integral of f if and only if the M_{α} -variational measure V_*F is absolutely continuous. Consequently, we prove that every function of bounded variation is a multiplier for the strong M_{α} -integral.

2. Definitions and basic properties

Throughout this paper, α is a positive real number, [a,b] is a compact interval in R. X will denote a real Banach space with norm $\|\cdot\|$ and its dual X^* . \mathcal{I} denote the family of all subintervals of [a,b]. $\overline{co}(Y)$ denote the closed convex hull of the set Y if $Y \subset X$.

Received March 16, 2012; Accepted April 04, 2013.

2010 Mathematics Subject Classification: Primary 28B05; Secondary 26A39.

Key words and phrases: M_{α} -integral, strong M_{α} -integral, M_{α} -variational measure.

Correspondence should be addressed to Dafang Zhao, dafangzhao@163.com.

A partition D is a finite collection of interval-point pairs $\{([u_i, v_i],$ $\{\xi_i\}_{i=1}^n$, where $\{[u_i,v_i]\}_{i=1}^n$ are non-overlapping subintervals of [a,b]. $\delta(\xi)$ is a positive function on [a,b], i.e. $\delta(\xi):[a,b]\to \mathbb{R}^+$. We say that D= $\{([u_i, v_i], \xi_i)\}_{i=1}^n$ is

- (1) a partial partition of [a,b] if $\bigcup_{i=1}^{n} [u_i, v_i] \subset [a,b]$,
- (2) a partition of [a,b] if $\bigcup_{i=1}^{n} [u_i, v_i] = [a,b]$,
- (3) δ -fine McShane partition of [a,b] if $[u_i,v_i] \subset B(\xi_i,\delta(\xi_i))$ $= (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ and $\xi_i \in [a, b]$ for all i=1, 2, ..., n,
- (4) δ -fine M_{α} -partition of [a,b] if it is a δ -fine McShane partition of [a, b] and satisfying the condition

$$\sum_{i=1}^{n} dist(\xi_i, [u_i, v_i]) < \alpha$$

for the given α , here $dist(\xi_i, [u_i, v_i]) = \inf\{|t_i - \xi_i| : t_i \in [u_i, v_i]\}.$ Given a δ -fine M_{α} -partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ we write

$$S(f, D) = \sum_{i=1}^{n} f(\xi_i)(v_i - u_i)$$

for integral sums over D, whenever $f:[a,b]\to X$.

Definition 2.1. A function $f:[a,b]\to X$ is M_{α} -integrable if there exists a vector $A \in X$ such that for each $\varepsilon > 0$ there is a positive function $\delta(\xi): [a,b] \to R^+$ such that

$$||S(f,D) - A|| < \epsilon$$

for each δ -fine M_{α} -partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. A is called the M_{α} -integral of f on [a, b], and we write $A = \int_a^b f$ or $A = (M_{\alpha}) \int_a^b f$. The function f is M_{α} -integrable on the set $E \subset [a, b]$ if the function

 $f\chi_E$ is M_{α} -integrable on [a,b]. We write $\int_E f = \int_a^b f\chi_E$.

The basic properties of the M_{α} -integral, for example, linearity and additivity with respect to intervals can be founded in [3]. We do not present them here. The reader is referred to [3] for the details.

Lemma 2.2. (Saks-Henstock) Let $f:[a,b] \to X$ is M_{α} -integrable on [a,b]. Then for $\varepsilon > 0$ there is a positive function $\delta(\xi) : [a,b] \to R^+$ such that

$$||S(f,D) - \int_{a}^{b} f|| < \epsilon$$

for each δ -fine M_{α} -partition $D = \{([u,v],\xi)\}$ of [a,b]. Particularly, if $D' = \{([u_i, v_i], \xi_i)\}_{i=1}^m$ is an arbitrary δ -fine partial M_α -partition of [a, b], we have

$$||S(f, D') - \sum_{i=1}^{m} \int_{u_i}^{v_i} f|| \le \epsilon.$$

Proof. The reader is referred to [3, Lemma 2.5] for the details.

THEOREM 2.3. Let $f:[a,b] \to X$ is M_{α} -integrable on [a,b].

- (1) for each $x^* \in X^*$, the function x^*f is M_{α} -integrable on [a,b] and
- $\int_{a}^{b} x^{*}f = x^{*}(\int_{a}^{b} f).$ (2) If $T: X \to Y$ is a continuous linear operator, then Tf is M_{α} integrable on [a, b] and $\int_{a}^{b} Tf = T(\int_{a}^{b} f).$

Proof. The proof is too easy and will be omitted.

Definition 2.4. A function $f:[a,b]\to X$ is strongly M_{α} -integrable if there exists an additive function $F: \mathcal{I} \to X$ such that for each $\varepsilon > 0$ there is a positive function $\delta(\xi): [a,b] \to \mathbb{R}^+$ such that

$$\sum_{i=1}^{n} \|f(\xi_i)(v_i - u_i) - F(u_i, v_i)\| < \epsilon$$

for each δ - fine M_{α} -partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. We denote $F(u_i, v_i) = F(v_i) - F(u_i).$

Theorem 2.5. Let X be a Banach space of finite dimension. f: $[a,b] \to X$ is M_{α} -integrable on [a,b] if and only if f is strongly M_{α} integrable on [a, b].

Proof. Sufficiency: From the definitions of the strong M_{α} -integral and M_{α} -integral, if f is strongly M_{α} -integrable on [a,b], then f is M_{α} integrable on [a, b].

Necessity: f is M_{α} -integrable on [a, b], then there is a positive function $\delta(\xi): [a,b] \to \mathbb{R}^+$ such that

$$\left\| \sum f(\xi)(v-u) - F(u,v) \right\| < \epsilon$$

for each δ -fine M_{α} -partition $D=\{([u,v],\xi)\}$ of [a,b]. Let $\{e_1,e_2,\cdots,e_n\}$ be a base of X and $g_i:[a,b]\to R$ $(i=1,2,\cdots,n)$. By the Hahn-Banach Theorem, for each e_i there is $x_i^* \in X^*$ such that

(2.1)
$$x_i^*(e_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

for $i, j = 1, 2, \dots, n$ and therefore $x_i^*(f) = \sum_{j=1}^n g_j x_i^*(e_j) = g_i$. Since $g_i : [a, b] \to R$ is M_{α} -integrable on [a, b] from Theorem 2.3, for each $\varepsilon > 0$ there is a positive function $\delta_i(\xi) : [a, b] \to R^+$ such that

$$|S(g_i, D_i) - \sum \int_{u}^{v} g_i| < \epsilon$$

for each δ_i - fine M_{α} -partition $D_i = \{([u, v], \xi)\}$ of [a, b]. By an easy adaptation of Saks-Henstock Lemma we have

$$\sum |g_i(\xi)(v-u) - \int_u^v g_i| < 2\epsilon.$$

We also have

$$F(u,v) = \int_{u}^{v} f = \int_{u}^{v} \sum_{i=1}^{n} g_{i}e_{i} = \sum_{i=1}^{n} \int_{u}^{v} g_{i}e_{i} = \sum_{i=1}^{n} e_{i}G_{i}(u,v)$$

where $G_i(u,v) = \int_u^v g_i$. Let $\delta(\xi) < \delta_i(\xi)$ for $i = 1, 2, \dots, n$ and consequently

$$\sum \|f(\xi)(v-u) - F(u,v)\|$$

$$= \sum \|\sum_{i=1}^{n} g_i(\xi)e_i(v-u) - \sum_{i=1}^{n} e_iG_i(u,v)\|$$

$$\leq \sum_{i=1}^{n} \|e_i\| \sum |g_i(\xi)(v-u) - G_i(u,v)|$$

$$< \epsilon \cdot \sum_{i=1}^{n} \|e_i\|$$

for each δ -fine M_{α} -partition $D = \{([u, v], \xi)\}$ of [a, b]. Hence f is strongly M_{α} -integrable on [a, b].

3. The M_{α} -variational measure and the strong M_{α} -integral

Let $F:[a,b]\to X$, arbitrary $E\subset [a,b]$ and a positive function $\delta(\xi):E\to R^+$, Let us set

$$V(F, \delta, E) = \sup_{D} \sum_{i} ||F(u_i, v_i)||$$

where the supremum is take over all δ - fine partial M_{α} -partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b] with $\xi_i \in E$. We put

$$V_*F(E) = \inf_{\delta} V(F, \delta, E)$$

where the infimum is take over all function $\delta(\xi): E \to R^+$.

It is easy to know that the set function $V_*F(E)$ is a Borel metric outer measure, known as the M_{α} -variational measure generated by F.

DEFINITION 3.1. $V_*F(E)$ is said to be absolutely continuous (AC) on a set E if for each set $N \subset E$ such that $V_*F(N) = 0$ whenever $\mu(N) = 0$.

DEFINITION 3.2. A function $F:[a,b]\to X$ is differentiable at $\xi\in[a,b]$ if there is a $f(\xi)\in X$ such that

$$\lim_{\delta \to 0} \| \frac{F(\xi + \delta) - F(\xi)}{\delta} - f(\xi) \| = 0.$$

We denote $f(\xi) = F'(\xi)$ the derivative of F at ξ .

THEOREM 3.3. Let $F: \mathcal{I} \to X$ be differentiable almost everywhere on [a,b]. Then F is the indefinite strong M_{α} -integral of f if and only if the M_{α} -variational measure V_*F is AC.

Proof. Necessity: Let $E \subset [a,b]$ and $\mu(E) = 0$. Assume $E_n = \{\xi \in E : n-1 \le ||f(\xi)|| < n\}$ for $n=1,2,\cdots$. Then we have $E = \bigcup E_n$ and $\mu(E_n) = 0$, so there are open sets G_n such that $E_n \subset G_n$ and $\mu(G_n) < \frac{\epsilon}{n \cdot 2^n}$.

By the Saks-Henstock Lemma, there exists a positive function δ_0 such that

$$\sum \|f(\xi_i)(v_i - u_i) - F(u_i, v_i)\| < \epsilon$$

for each δ_0 - fine partial M_{α} -partition $D = \{([u_i, v_i], \xi_i)\}$ of [a, b].

For $\xi \in E_n$, take $\delta_n(\xi) > 0$ such that $B(\xi, \delta_n(\xi)) \subset G_n$. Let

$$\delta(\xi) = \min\{\delta_0(\xi), \delta_n(\xi)\}.$$

Assume $D' = \{([u, v], \xi)\}$ is a δ - fine partial M_{α} -partition with $\xi \in E$. We have

$$\sum \|F(u,v)\| = \sum \|F(u,v) - f(\xi)(v-u) + f(\xi)(v-u)\|$$

$$\leq \sum \|F(u,v) - f(\xi)(v-u)\| + \sum \|f(\xi)(v-u)\|$$

$$< \epsilon + \sum_{n} \sum_{\xi \in E_n} \|f(\xi)(v-u)\|$$

$$< \epsilon + \sum_{n} n \frac{\epsilon}{n \cdot 2^n} = 2\epsilon$$

This shows that $V_*F(E) < 2\epsilon$. Hence the M_{α} -variational measure V_*F is AC as desired.

Sufficiency: There exists a set $E \subset [a, b]$ be of measure zero such that $f(\xi) \neq F'(\xi)$ or $F'(\xi)$ does not exist for $\xi \in E$. We can define a function as follows

(3.1)
$$f(x) = \begin{cases} F'(\xi) & \text{if } \xi \in [a, b] \backslash E, \\ \theta & \text{if } \xi \in E. \end{cases}$$

Then for $\xi \in [a, b] \setminus E$, by the definition of derivative, for each $\varepsilon > 0$, there is a positive function $\delta_1(\xi)$ such that

$$||f(\xi)(v-u) - F(u,v)|| < \frac{\epsilon}{\alpha + (b-a)} (dist(\xi, [u,v]) + v - u)$$

for each interval $[u, v] \subset (\xi - \delta_1(\xi), \xi + \delta_1(\xi)).$

 V_*F is AC, then for $\xi \in E$, there is a positive function $\delta_2(\xi)$ such that

$$\sum \|F(u,v)\| < \epsilon$$

for each δ_2 - fine partial M_{α} -partition $D_0 = \{([u,v],\xi)\}$ with $\xi \in E$. Define a positive function $\delta(\xi)$ as follows

(3.2)
$$\delta(\xi) = \begin{cases} \delta_1(\xi) & \text{if } \xi \in [a, b] \backslash E, \\ \delta_2(\xi) & \text{if } \xi \in E. \end{cases}$$

Then for each δ - fine M_{α} -partition of [a,b], we have

$$\sum \|f(\xi)(v-u) - F(u,v)\|$$

$$= \sum_{\xi \in E} \|F(u,v) - f(\xi)(v-u)\| + \sum_{\xi \in [a,b] \setminus E} \|F(u,v) - f(\xi)(v-u)\|$$

$$\leq \epsilon + \frac{\epsilon}{\alpha + (b-a)} \sum_{\xi \in [a,b] \setminus E} (dist(\xi, [u,v]) + v - u)$$

$$< \epsilon + \frac{\epsilon}{\alpha + (b-a)} (\alpha + b - a) = 2\epsilon.$$

Hence f is strong M_{α} -integrable on [a,b] with indefinite strong M_{α} -integral F.

DEFINITION 3.4. Let $G:[a,b]\to R$. A function $F:[a,b]\to X$ is M_{α} -Stieltjes integrable with respect to G on [a,b] if there exists a vector $A\in X$ such that for each $\varepsilon>0$ there is a positive function $\delta(\xi):[a,b]\to R^+$ such that

$$||S(F,G,D) - A|| < \epsilon$$

for each δ -fine M_{α} -partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b], whenever

$$S(F, G, D) = \sum_{i=1}^{n} F(\xi_i)(G(v_i) - G(u_i)).$$

A is called the M_{α} -Stieltjes integral of F with respect to G on [a,b], and we write $A = (M_{\alpha}S) \int_a^b F dG$.

Similar to [10, Proposition 5], we have the following Lemma.

LEMMA 3.5. Let $G:[a,b] \to R$ be a non decreasing function. If a function $F:[a,b] \to X$ is M_{α} -Stieltjes integrable with respect to G, then for each $[u,v] \in [a,b]$, we have

$$(M_{\alpha}S)\int_{u}^{v} FdG \in \overline{co}(\{G(u,v)x : x \in X \text{ and } x = F(\xi) \text{ for some } \xi \in [u,v]\}).$$

THEOREM 3.6. Let $f:[a,b] \to X$ be strongly M_{α} -integrable on [a,b] and $F(x) = \int_a^x f$ for each $x \in [a,b]$. If $G:[a,b] \to R$ is a function of bounded variation, then Gf is strongly M_{α} -integrable and

$$\int_{a}^{b} Gf = G(b)F(b) - (M_{\alpha}S) \int_{a}^{b} FdG.$$

Proof. Let $\epsilon > 0$, arbitrary $E \subset [a,b]$ with $\mu(E) = 0$. Assume $D = \{([u_i,v_i],\xi_i)\}_{i=1}^n$ is an arbitrary δ - fine partial M_{α} -partition with $\xi_i \in E$.

It is easy to know that F is continuous on [a,b]. G is of bounded variation, then the M_{α} -Stieltjes integral $(M_{\alpha}S)\int_a^b FdG$ exists on [a,b]. We can assume G is non decreasing and with upper bounded M>0 on [a,b], then for each i, there are $x_1^{(i)}, x_2^{(i)}, \cdots, x_{m_i}^{(i)} \in [u_i, v_i]$ and numbers $\lambda_1^{(i)}, \lambda_2^{(i)}, \cdots, \lambda_{m_i}^{(i)}$ with $\sum_{j=1}^{m_i} \lambda_j^{(i)} = 1$ such that

$$\left\| \sum_{j=1}^{m_i} \lambda_j^{(i)} G(u_i, v_i) F(x_j^{(i)}) - \int_{u_i}^{v_i} F dG \right\| \le \frac{\epsilon G(u_i, v_i)}{n V(G, [a, b])}$$

where V(G, [a, b]) denote the variation of G over the interval [a, b]. We define a function by

$$\int_{a}^{x} Gf = H(x) = G(x)F(x) - (M_{\alpha}S) \int_{a}^{x} FdG$$

and consequently have

$$\begin{split} &\|H(v_{i})-H(u_{i})\|\\ &=\|G(v_{i})F(v_{i})-G(u_{i})F(u_{i})-(M_{\alpha}S)\int_{u_{i}}^{v_{i}}FdG\|\\ &=\|G(v_{i})[F(v_{i})-F(u_{i})]+(G(v_{i})-G(u_{i}))[F(u_{i})-\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}F(x_{j}^{(i)})]\\ &+(G(v_{i})-G(u_{i}))\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}F(x_{j}^{(i)})-(M_{\alpha}S)\int_{u_{i}}^{v_{i}}FdG\|\\ &\leq |G(v_{i})|\cdot\|F(u_{i},v_{i})\|+G(u_{i},v_{i})\|F(u_{i})-\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}F(x_{j}^{(i)})\|\\ &+|G(u_{i},v_{i})\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}F(x_{j}^{(i)})-(M_{\alpha}S)\int_{u_{i}}^{v_{i}}FdG\|\\ &\leq M\|F(u_{i},v_{i})\|+G(u_{i},v_{i})\|\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}[F(u_{i})-F(x_{j}^{(i)})]\|+\frac{\epsilon G(u_{i},v_{i})}{nV(G,[a,b])}\\ &\leq M\|F(u_{i},v_{i})\|+V(G,[a,b])\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}\|F(u_{i})-F(x_{j}^{(i)})\|+\frac{\epsilon G(u_{i},v_{i})}{nV(G,[a,b])}\\ &\leq M\|F(u_{i},v_{i})\|+V(G,[a,b])\sum_{j=1}^{m_{i}}\lambda_{j}^{(i)}\|F(u_{i})-F(x_{N^{(i)}}^{(i)})\|+\frac{\epsilon G(u_{i},v_{i})}{nV(G,[a,b])}\\ &=M\|F(u_{i},v_{i})\|+V(G,[a,b])\|F(u_{i})-F(x_{N^{(i)}}^{(i)})\|+\frac{\epsilon G(u_{i},v_{i})}{nV(G,[a,b])} \end{split}$$

where $||F(u_i) - F(x_{N^{(i)}}^{(i)})|| = max\{||F(u_i) - F(x_j^{(i)})||\}$ for each $j \in \{1, 2, \dots, m_i^{(i)}\}$. V_*F is AC from Theorem 3.3, then there exists a positive function $\delta(\xi)$ such that

$$\sum_{i=1}^{n} ||F(u_i, v_i)|| < \frac{\epsilon}{M + V(G, [a, b])}.$$

Therefore

$$\sum_{i=1}^{n} \|H(v_i) - H(u_i)\| \leq M \sum_{i=1}^{n} \|F(u_i, v_i)\| + \frac{\epsilon \sum_{i=1}^{n} G(u_i, v_i)}{nV(G, [a, b])} + V(G, [a, b]) \sum_{i=1}^{n} \|F(u_i) - F(x_{N^{(i)}}^{(i)})\|$$

$$\leq (M + V(G, [a, b])) \frac{\epsilon}{M + V(G, [a, b])} + \epsilon = 2\epsilon$$

and it follows that V_*H is AC. We also have that H(x) is differentiable almost everywhere and H'(x) = G(x)f(x) a.e. on [a,b], then Gf is strongly M_{α} -integrable on [a,b] from Theorem 3.3.

Consequently, we can easily get the following theorem.

THEOREM 3.7. Let $f:[a,b] \to X$ and $G:[a,b] \to R$. If Gf is strongly M_{α} -integrable on [a,b] for every strongly M_{α} -integrable f, then G is equivalent to a function of bounded variation on [a,b].

Acknowledgements

The authors are grateful to the referee for his or her careful reading of the manuscript and for valuable and helpful suggestions.

References

- [1] J. M. Park, H. W. Ryu, and H. K. Lee, *The M_{\alpha}-integral*, J. Chungcheong Math. Soc. **23** (2010), no. 1, 99-108.
- [2] J. M. Park, D. H. Lee, J. H. Yoon, and H. K. Lee, The integration by parts for the M_α-integral, J. Chungcheong Math. Soc. 23 (2010), no. 4, 861-870.
- [3] J. M. Park, B. M. Kim, Y. K. Kim, and H. K. Lee, The M_{α} -integral of Banach-valued functions, J. Chungcheong Math. Soc. **25** (2012), no. 1, 115-125.
- [4] B. Bongiorno, On the Minimal Solution of the Problem of Primitives, J. Math. Anal. Appl. **251** (2000), no. 2, 479-487.
- [5] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc. (2)62 (2000), no. 1, 117-126.
- [6] A. M. Bruckner, R. J. Fleissner, and J. Fordan, The minimal integral which includeds Lebesgue integrable functions and derivatives, Collq. Mat. 50 (1986), 289-293.
- [7] R. A. Gondon, The integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Mathematics, Vol. 4, American Math. Soc. Providence, RI, 1994. MR 95m: 26010.

- [8] P. Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989.
- [9] L. D. Piazza, A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste Vol. XXXIV (2002), 143-153.
- [10] L. D. Piazza and V. M. Arraffa, The McShane, PU, and Henstock integrals of Banach valued functions, Cze. J. Math. 52(127) (2002), 609-633.
- [11] S. Schwabik and G. Ye, Topics in Banach space integration, World Scientific, 2005.
- [12] D. Zhao and G. Ye, On AP-Henstock-Stieltjes integral, J. Chungcheong Math. Soc. 19 (2006), no. 2, 177-188.

*

School of Mathematics and Statistics Hubei Normal University Huangshi 435002, China E-mail: youxuexiao@126.com

ΨΨ

School of Mathematics and Statistics Hubei Normal University Huangshi 435002, China E-mail: chengjian@163.com

School of Mathematics and Statistics Hubei Normal University Huangshi 435002, China E-mail: dafangzhao@163.com